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Sociologists contend that industries can be importantly characterized as sets of
interlocking producer positions. This paper argues that this distinctively relational
conceprion of a marker represents a powerful framework for depicting and analyzing the
process of technical change. The paper presents a method for using patent citation data
to describe the positions of high-technology firms in a market-wide ‘technological
network’. It focuses on one property of a producer’s position in this technological
network—"crowding’'—awhich represents the extent to which the firm specializes in
areas of technology that are densely populated with other organizations. Four
propositions are developed linking technological crowding to two firm-level measures of
innovation: (i) the annual level of RED expenditures, and (ii) the continuous time
rate of patenting. The findings demonstrate that the positions innovators occupy in the
technological structure of the market strongly affects their level of investment in RED
and rate of innovation.

1. Introduction

The cogency of the sociological perspective on economic markets draws from
the clarity of its conception and measurement of the positions occupied by
producers. By precisely casting the producers in a market according to their
locations in role structures (e.g. White, 1981), status orderings (e.g. Podolny,
1993), and market niches (e.g. Burt, 1983), sociological work has contributed
to our understanding of such varied phenomena as the determinants of firm
performance, the path to market clearing prices, the economic advantages
and strategic constraints of occupying particular status positions, and the
diffusion of corporate practices through communities of organizations.
Although progress has been made toward the development of a distinct-

ively sociological understanding of markets, one of the most fundamental and
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influential domains of economic activity—the production of new ideas and
innovations—has until recently escaped the attention of sociological analysis.
True, scholars have spent many years grappling with some related questions.
For instance, the absence of work on how market organization affects
innovation belies the extensive effort devoted to the reciprocal relationship,
namely the role of technological change in reconfiguring the structure of
existing organizations (Thomson and Bates, 1957; Barley, 1986) and estab-
lished industries (Tushman and Anderson, 1986; Barnett, 1990; Anderson
and Tushman, 1990). There have also been many studies of the mechanisms
that propel the diffusion of innovations through established social structures
(Coleman ez /., 1966; Burt, 1987; Davis and Greve, 1997). Yet, in a period
in which the ability to produce new technologies sustains organizational (and
increasingly, economy-wide) performance, the relatively limited attention to
the structural determinants of innovation is a fundamental omission in the
sociological literature on organizations and markets.

This gap in the literature is especially notable because the phenomenon is
inherently expressible in terms that are familiar to the sociological perspective
on markets. In particular, the conception of a market as a collection of
interrelated producer positions represents a powerful analytical framework for
specifying the context in which innovation occurs. The reason for this is that
the development of new technologies is a process that intrinsically produces
linkages spanning organizational boundaries. The process of technical change
is one in which new ideas are always extensions of antecedent ideas and are
themselves candidates to become foundations for subsequent development
(Schumpeter, 1942). Organizations participate in this process as the architects
of ideas and innovations and, as a result, the actual technical relationships
between discrete inventions imply both competitive and mutualistic connec-
tions between the enterprises engaged in the development of technology.
Because of the intrinsic organizational interdependencies in the technology
development process, relational measurements of firm positions and their
characteristics—core strengths in the sociology of markets—are ideally suited
to describing and modeling the factors that compel organizations to devote
resources to the development of new technologies.

In this paper, I extend the social structural theory of technical change
introduced in Podolny and Stuart (1995) and Stuart and Podolny (1996) to
analyze innovation-related activities at the firm level. I begin by charac-
terizing the positions of producers within a high-technology market, which is
then followed by an empirical investigation of the links between technological
positioning, the intensity of organizational searches for new technologies and
the rate of innovation. I focus primarily on one property of producers’
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positions—‘crowding’—which represents the extent to which an organization
specializes in areas of technology that are densely populated with other firms
(Stuart and Podolny, 1996). Crowded positions are tantamount to contested
areas of technology: the producers in them lack differentiation because they
have committed resources to the development and refinement of very similar
ideas.

The paper’s core prediction is that high crowding evokes effort on the part
of producers to distinguish their activities from the initiatives of tech-
nologically adjacent organizations. This pursuit of differentiation assumes the
form of investments in the development of technology. Thus, crowding is
expected to incite organizational search. After proposing an organization-
specific measure of technological crowding, I then present four propositions
linking technological crowding to two firm-level variables: (i) annual research
intensity (R&D spending), and (ii) the rate of innovation (measured as the
continuous time rate of patenting).

2. Technological Positioning and the Intensity of
Organizational Search

Through detailed descriptions of the circumstances surrounding the discovery
of particular inventions, historians and sociologists of technology have
demonstrated that the development of new inventions is significantly shaped
by the sociotechnical and organizational contexts in which inventors work
(Abernathy, 1978; Hughes, 1983; Tushman and Anderson, 1986; Latour,
1987; Basalla, 1988; Tushman and Rosenkopf, 1992). Corporate tech-
nological innovation is similarly intertwined with the organizational context.
For instance, organizations typically draw ideas for new technologies from
sources beyond their immediate boundaries, and these ideas often represent
improvements to inventions developed by other organizations (Utterback,
1974; von Hippel, 1988). Therefore, viewed from the vantage point of any
principal actor, the process of technological innovation entails the devel-
opment of externally generated ideas and improvements to previously made
discoveries.

The evolution of technology—Iike the progression of science—is thus an
inherently cumulative endeavor, in which new inventions are amendments of,
improvements to, or novel combinations of antecedent ones (Schumpeter,
1942; Elster, 1983; Basalla, 1988; Dosi, 1988). Podolny and Stuart (1995)
argue that because technology development is a cumulative endeavor, it is
possible to trace out the evolutionary links between ‘discrete’ inventions.
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When this is done, a technological area can be viewed as an evolving network
in which inventions are nodes and ties are the inter-invention ideational links
that string together the nodes. Innovation occurs when new nodes (inven-
tions) extend the frontier of the existing network. To attach a concrete image
to this representation of the evolution of technology, a graphical picture of a
technological network appears in Figure 1. In the figure, boxes are inventions
and ties exist where a new node extends an antecedent one; thus, ties reflect
technical extensions. Links in Figure 1 follow the direction of the time axis
because technology always flows from antecedent to consequent. From the
data in the figure, the developers of the inventions in the network are known
(e.g. organizations A and B), as are the linkages that embed each organiza-
tion’s nodes into the network. With this information, a set of properties of
each organization’s ‘position’ or ‘niche’ can be specified.

I argue that organizations’ positions in the technological network greatly
influence the extent to which they choose to and are able to contribute to
the evolution of the network in future periods. In this paper, I emphasize
differences in the level of crowding across organizational positions and also
consider the scope of organizations’ participation across different segments
of the technological network (i.e. a firm’s level of generalism or ‘niche
width’), although one could certainly specify many additional properties of
each organization’s position in the network. For a number of reasons, high
technological crowding at the firm level is expected to evoke an accelerated
search for new technologies—an argument that has precedent and parallel
explanations in the sociology of science (e.g. Merton, 1973) and a number
of potential mechanisms in sociological work on structural equivalence
(Lorrain and White, 1971; Burt, 1976) and competition (Hawley, 1950;
Hannan and Freeman, 1989). As discussed in the conclusion, it also
accords with some theories of the effects of competition in economics, pat-
ticularly with the work on the ramifications of the spatial concentration of
industries.

In developing the argument that competitive crowding promotes organiza-
tional search, it is helpful to begin with the assumption (shortly relaxed) that
technological innovation is governed by the ‘winner-take-all’ quality that
characterizes races for priority in science. In other words, I begin by assuming
that the ‘appropriability regime’ in an industry is tight (Teece, 1986),
implying that innovators are able to protect their proprietary technical devel-
opments from competitor imitation. This might occur because the relevant
technologies are embodied in products (or processes) that are difficult to
imitate or, more likely, because they are secured by strong intellectual
property protection. When appropriability is tight, producers are able to
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FIGURE 1. Hypothetical technological network.

safeguard their innovations from imitation and the economic rewards for
being the first to innovate can be substantial.!

When the appropriability regime is tight, organizational innovation shares
a core characteristic with the process of scientific progress: the largest share
of the rewards from a new development accrue to the developer, and this
makes priority in discovery a key organizational objective and produces a
broadly similar set of competitive dynamics in the two domains. For this
reason, much of the work on the effects of competition in scientific specialties
is helpful in understanding the relationship between technological crowding
and innovation. In the sociology of science, interest in competition’s influence
on scientific progress emerged with the observation that the histories of
scientific disciplines are interlaced with fierce disputes over priority (i.e.
controversies over who was the first to make a scientific discovery). Merton
(1973, pp. 286-324) highlighted the frequency of independent, multiple

! Many of the analytical models of patent races in economics possess the feature that the winner reaps
all of the rewards from the race (e.g. Grossman and Shapiro, 1987; Delbono and Denicolo, 1991). In other
words, they assume that the first firm to patent is able to fully exclude others from using the discovery.
Some of these models conclude that competition increases the intensity of organizational search as I will
argue, while others assert that the presence of competing organizations reduces the aggregate level of R&D
spending in equilibrium. The argument in this paper differs both in terms of the posited mechanisms and
the importance it ascribes to the assumption that the sole prize is awarded to the first to innovate. In light
of the empirical evidence that patents are often not successful at precluding competitors from imitating an
innovation (see Levin ¢ /., 1987), it would seem important to develop arguments that are not highly
sensitive to the assumption of tight appropriability conditions.
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discoveries and the resultant altercations among scientists concerning the
rightful allocation of credit for important scientific advances.” To determine
the prevalence of concerns about priority, Hagstrom (1965) surveyed 1400
scientists, finding that about two-thirds had at some point in their careers
been engaged in research that was anticipated by another scholar.

Although never placed under empirical scrutiny, one implication of
Hagstrom’s finding is that individual scientists in crowded fields will devote
greater effort to their work (and produce faster) than comparably trained and
equipped scientists in less crowded fields. The reason for this is that, in
addition to the usual incentives to produce, scientists in crowded areas work
under the constant threat that their research agendas and work-in-progress
will be pre-empted by the findings of competing researchers. Drawing out
this implication, Merton (1973, p. 330) wrote:

Differences in the intellectual and social structure of scientific specialties
probably affect the extent and intensity of competition for discovery within
them. . . . Some fields are more ‘crowded’ than others in the sense that
many workers are focusing on the same problems. In such specialties,
competition tends to be particularly intense, and the tensions generated by
the race for priority greater.

Thus, similar to my contention that the structure of competition in high-
technology markets is a function of the crowding of innovative activity around
the niches of producers, Merton argued that competition among scientists is a
function of the intellectual organization of scientific fields. Moreover, as a
stimulus for priority races, competition—a socio-scientific property—has
been posited to speed the rate of scientific discovery.

There are many notable examples of crowding-induced innovation races
among high-technology firms. Perhaps the most publicized of these have
occurred in biotechnology.? For example, a crowding effect was evident in the

% A classic illustration of the salience of priority concerns in science is Watson’s (1968) chronicle of the
discovery of the helical structure of DNA. When describing the hunt, Watson expressed great concern that
Linus Pauling would be the first to identify the structure of DNA. Watson and Crick’s search was
motivated not just by their belief in the scientific importance of the structure of DNA, but more
immediately by the knowledge that Pauling and others were actively pursuing the very same discovery.
Werth (1994) provides an enlightening ethnographic account of priority contests in an industrial context
(the commercialization of a family of immunosuppressive drugs by biotech firms, university laboratories
and pharmaceutical firms).

’ It may not be a coincidence that drug discovery ranked as one of the industries in which patents are
effective means of intellectual property protection in the Levin ez a/. (1987) appropriability survey. Because
‘composition of matter’ patents—those that apply to chemical compositions, drugs, gene sequences and
vectors, and man-made (as opposed to naturally occurring) living matter—tend to be effective barriers to
imitation, biotechnology is one of the industries in which patents do protect intellectual property, and this
implies that the largest share of the rewards for innovating often accrue to the first to patent a new
technology. Hence, discovery races take on particular salience in this industry.
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worldwide search for a gene called BRCAI (BReast CAncer 1). In 1990 a
prominent cancer researcher posited the location of a gene that would cause
breast cancer if it was formed incorrectly. Scientists believed that BRCA1’s
sequence could provide clues to the biological mechanisms behind breast
cancer, and it could lead to the development of lucrative diagnostic products.
In September 1994 BRCA1 was sequenced by a team of scientists led by
Myriad Genetics, a small biotechnology firm. The award for priority was the
patent rights to the DNA sequence. Speaking of the four-year search, the
CEO of Myriad Genetics stated, ‘It was probably the most hotly contested
race around—a dozen major research labs were looking for this gene’ (Rhein,
1994).

Racing imagery has become ubiquitous in popular accounts of industrial
innovation. Consider two recent headlines in the Wall Street Journal: Virus
Chase: Five Teams Pursue Herpes Drug’ and ‘Battle Over Three-dimensional
Graphics Takes Shape: Chip Firm S3 Wins Round Over Cirrus Logic, With
Giants Poised to Strike’. These accounts describe organizations racing to
achieve a set of technological milestones. Although each contest encompasses
a separate group of organizations competing in a different technical arena, all
races are thought to have been stimulated by the substantial benefits that can
be captured by those who are first to reach sought-after milestones. Stated in
terms of the network-based framework elaborated above, the presumption is
that when an organization adds an important new node to the technological
network, all other organizations are forestalled from contributing the iden-
tical node. Because only one organization can be the first to contribute any
particular node, there is an overtly competitive race to extend the tech-
nological network, and the intensity of this competition is greatest in domains
in which many organizations are poised to make similar accomplishments, i.e.
in crowded areas of the technological network.

Crowding-induced innovation contests are driven by knowledge of the
rewards accruing to the winners of technology races. Indeed, technological
areas become crowded because firms are attracted to domains in which the
remuneration for innovation is forecast to be substantial. Particularly in
domains characterized by tight appropriability regimes, knowledge of the
rewards for securing intellectual property rights for an innovation motivate
organizations in crowded technological positions to invest heavily in the
search for new technologies.”

4 One might counter that there is a disincentive to invest in R&D among firms in crowded positions
arising from the fact that the probability of being first to invent declines with the crowding around a niche
(i.e. the probability of any one organization being first to a discovery falls as the number of competing

searchers increases); in fact, this relationship is explicitly predicted below. My belief is that a number of
factors militate against this disincentive. First, given the highly path-dependent and competence-
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There are a number of additional benefits of investments in R&D even
in circumstances in which intellectual property protection is not ironclad.
First, the possibility of obtaining status and public recognition is an incentive
to conduct organizational search. Just as the status-based rewards for dis-
covery represent a core element of the system of credits in science, successful
organizational innovators advance their reputations when they are the first to
achieve significant technical milestones. As detailed accounts of the hunt for
highly visible scientific or technological breakthroughs so often recount, the
entry of additional actors into a technological area, while raising the com-
petitive intensity of the area, also markedly augments the status that accrues
to the developers of pivotal innovations in those areas (Watson, 1968; Werth,
1994). The decisions of multiple organizations to invest in the development
of a particular set of technologies collectively generates attention and a sense
of urgency for progress in that area. In turn, heightened attention to progress
in crowded areas amplifies the recognition that accrues to those responsible
for breakthroughs. Thus, particularly for organizations that compete in hotly
contested technological areas, winning an innovation contest is a mark of skill
and an occasion to publicize the organization’s technological prowess. As a
result, even in settings in which competitors can imitate a focal organization’s
innovations and so compromise its ability to reap the full profits from an
innovation (i.e. in domains in which the appropriability regime is weak and
the winner-take-all assumption is not defensible), the victors of technology
races are routinely anointed by the press as innovation leaders. Thus, through
gains in status, organizations can benefit from their technical achievements
even if they cannot always fully preclude competitor imitation.

The status-based rewards earned by an organization for a major innovation
are demonstrated by IBM’s recent, ‘break-through’ development of semi-
conductor chips that use copper rather than aluminum as the interconnect
metal.> A search of the Lexis/Nexis database revealed over 500 articles
pertaining to IBM’s innovation in a six-month period. The fact that public
awareness of densely populated technology areas is already high only serves

dependent nature of organizational innovation (cf. Nelson and Winter, 1982; Dosi, 1988; Cohen and
Levinthal, 1990; Stuart and Podolny, 1996), firms often do not have the option of moving between niches;
thus, they either succeed at what they have historically done or they fail, which may entail the loss of sunk
investments in manufacturing assets, research facilities and the like. Second, when appropriability
conditions are imperfect, firms may capitalize on new technologies even when they are not the developers
of them. However, it is now understood that an organization must possess absorptive capacity to
comprehend and assimilate external developments (i.e. to capitalize on a competitor’s advancement). Thus,

the development of a technical knowledge stock produces the incentive to invest in R&D when an
organization occupies a crowded niche (see Cohen and Levinthal, 1990).

> Copper conducts faster than aluminum and permits smaller line widths (distances) between circuits on
a chip. By allowing for a higher density of circuits and speeding communication among them, copper
interconnects promise faster integrated circuits.
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to magnify the attention that is bestowed upon successful innovators in those
domains.®

A final motivation for the proposition that high crowding will accelerate the
search for new technologies can be attributed to the system of intellectual
property protection and the nature of technological competition. With
relatively few exceptions, product and process innovations tend to be protected
by multiple patents: for example, a new semiconductor chip or a novel medical
electronic device might be associated with dozens or even hundreds of patents.
Because technological progress is cumulative and each new product or
process improvement typically represents a vector of extensions to technologies
developed by many different innovators, it is often the case that a focal organ-
ization may be excluded from the use of a particular component technology
because the rights to it are held by a competing firm (patent infringement
lawsuits and the like are the legal mechanisms of exclusion). There are two parts
to the reasoning relating this consideration to technological crowding. First,
because crowding increases when a focal organization concentrates on a heavily
populated area of technology, the level of crowding affects the extent to which
other firms have the capacity to interfere with a focal organization’s
undertakings: higher crowding implies that a greater number of firms are
poised to exclude an organization from the use of a technology that is central
to its endeavors. Second, the best defense against a competitor’s effort to
withhold the right to use an innovation is the capacity to retaliate in kind, i.e.
to control a piece of technology that is essential to the competitor’s initiatives.
This power increases in the depth and quality of an innovator’s stock of
intellectual property; organizations that possess many and high-quality
technical assets are well positioned to counter the infringement claims of their
competitors. Therefore, organizations in crowded positions have the strongest
incentive to engage in innovative search to develop and leverage the
exclusionary power of a strong intellectual property base.”

¢ The desire of organizations to obtain status in high-technology markets may be quite rational from a
net present value standpoint. High-status firms are able to attract top-quality scientists and technologists,
they have greater ability to promote proprietary and open technical standards, they are often able to charge
premium prices for their products and services, and so on. Due to benefits such as these, Podolny ez a/.
(1996) found that high-status technology firms grew at a faster rate than otherwise comparable but
lower-status firms. Stuart (1998) found that high-status semiconductor producers were better able to
attract strategic alliance partners than their lesser-known competitors. Podolny (1993) discusses many of
the generic advantages of status, with particular emphasis on the securities underwriting market.

7 Grindley and Teece (1997) develop this line of reasoning in a case study of the electronics industry.
They state (p. 8), ‘Patents and trade secrets have become a key element of competition in high-technology
industries. In electronics and semiconductors, firms continually make large investments in R&D in their
attempts to stay at the frontier and to utilize technological developments external to the firm. Fierce
competition has put a premium on innovation and on defending IP from unlicensed imitators. As IP
owners have taken a more active stance regarding their patent portfolios, industry participants increasingly
find it necessary to engage in licensing and cross-licensing . . . Firms that are high net users of others’
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Based upon the preceding arguments, the level of niche crowding is
expected to affect an organization’s decision to invest in innovation. I make
the following hypothesis:

Hypothesis 1

The intensity of organizational search (level of RED spending) is a positive function
of the level of crowding around an organization’s position in the technological
network.®

A variety of organizational and positional characteristics may mediate the
relationship between crowding and R&D spending. One that I believe to
be particularly significant is the scope of an organization’s innovative
competences. The width of an organization’s niche refers to the extent to
which the organization’s activities are spread across the different segments of
an industry’s resource space: firms with broadly distributed activities are
known as generalists, while those with narrowly focused positions are
specialists. Conceptually, specialist organizations stake their life chances on
their ability to dominate a small slice of an industry’s resource space; they
strive for excellence in a narrow range of activities, hoping to achieve
technological superiority over the other organizations that compete in their
domains. In contrast, generalists pursue scope economies by competing in
multiple domains and implicitly hedge their bets by participating in many of
the segments in a market (Freeman and Hannan, 1983; Carroll, 1985). Stated
in terms of the technological network framework, specialists participate in
narrowly circumscribed regions of the network, whereas the nodes of gener-
alists are distributed throughout the network.

Niche width is likely to mediate the response to technological crowding
because it influences the set of viable strategic options open to the firm. As
an organization-level variable, crowding is a composite computed across the
technical areas in which an organization focuses its efforts. When an
organization with a narrow corporate scope is in a crowded area, all of its
activities are in a single or small number of densely populated regions of the
technology space. Because the external conditions confronted by a specialist
pertain to the full range of corporate activities, I expect that a specialist’s

patents have a choice. They must increasingly pay royalties, or they must develop their own portfolios
so as to bring something to the table in cross-licensing negotiations.’

8 Of course, increasing R&D spending is one among a set of potential responses to high crowding.
Another response is to augment the investment in the complementary assets needed to commercialize new
technologies, such as upgrading manufacturing assets or raising the level of marketing expenditures to
obtain differentiation in a product market space. Because R&D spending adjustment is the most proximate
of the predictable responses to the domain in which crowding is conceived and measured, I focus on it.
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response to crowding (and other environmental conditions) is likely to be
amplified. This will be particularly so when innovation is the activity in
question because the path-dependent nature of the technology production
function means that firms are unable to quickly shift the focus of their
research. While the generalist possesses the option to shift its emphasis across
the set of activities under the corporate umbrella in response to different
conditions encountered by the components of its operations, specialists do not
have this flexibility. Thus, I expect specialists to exhibit the strongest response
to technological crowding.

Hypothesis 2

The intensity of organizational search (level of RED spending) induced by a high
level of crowding around an organization’s position in the technological network will
be greatest if the organization is a specialist

3. The Rate of Innovation

R&D spending is a measure of organizations’ inputs to the innovation process.
The argument thus far holds that firms in technologically crowded regions are
relatively more concerned about having planned inventions anticipated by
competitors and about being excluded from the use of core technologies that
are controlled by competitors. They also stand to gain relatively more
reputation-based rewards for developing important advances in their areas
than do firms in crowded market segments. By contrast, organizations in
crowded areas face the risk that their recent discoveries may be quickly leap-
frogged and the possibility that planned inventions will be anticipated, and
this creates a stimulus to invest in R&D.

As Elster (1983, p. 105) has argued, any theory capable of explaining the
amount of innovative inputs (R&D spending) is also likely to be useful in pre-
dicting the rate of innovation. The difference between these two quantities is
that it is possible to duplicate R&D efforts, while it is not possible for multiple
actors to be the first to develop an identical technology. Referring again to
BRCAI to illustrate the point, a number of organizations simultaneously
invested in sequencing the gene, but only one organization was the first to
identify (and patent) the sequence; in other words, the effort to sequence the
gene was duplicated but the most widely pursued result (the sequence) was
achieved first by a single enterprise. Still, it is almost certain that BRCAI was
sequenced sooner than would have been the case had there not been an
awareness among each of the competing research teams that other organiza-
tions were pursuing the gene.
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The macro-level implication of this dynamic is that technology develops
most rapidly in crowded fields. The fact that there are many concurrent
searches taking place in crowded areas means that advances in those areas will
be achieved quickly. At the same time, the micro-level implication, which
follows from the posited effect of crowding on R&D spending, is that firms
in crowded positions innovate relatively quickly. If firms in crowded areas
spend more on research, they are likely to innovate at a greater rate even
though some of their most intensively sought targets will be reached first by
competitors.” Thus, following the reasoning that produced the prediction that
firms in crowded areas invest more in R&D, I make the following hypothesis:

Hypothesis 3
Organizations that occupy crowded positions in the technological network will have
a high rate of innovation.

There is also reason to believe that the level of crowding in a region of the
technological network may moderate the relationship between R&D spending
and the rate of innovation. Assuming a contest to develop important nodes
in the network and thus to secure rights to a valuable intellectual property
space, I would expect that any one organization will sometimes fail to succeed
in its attempt to develop a cluster of technologies before another innovator
has achieved the very same result. Moreover, the probability of failure may
increase in the number of other organizations vying to achieve the same
objective. Because crowded areas are characterized by a thicket of relatively
undifferentiated research and development projects across competitors, the
possibility of being pre-empted by competitors’ advances is probably greatest
in crowded areas.

This reasoning suggests that a given investment in R&D inputs will yield

 An anonymous reviewer was concerned that hypothesis 3 commits an ecological fallacy. The reviewer
agreed that the sector-level rate of discovery will increase in the number of firms in the sector (e.g. if there
are more gene sequencing firms, gene sequences will be identified sooner), but he/she was sceptical that
the same result would apply at the firm level. A little formalization will clarify the argument. Allow 7 to
index firms, RD to denote research spending, A to signify technological crowding, and 7D to represent
the time between discoveries (the waiting time). Suppressing time subscripts, I argue: RD; = f(A))
(hypothesis 1); and TD; = ARD,) = fl4;) (hypothesis 3; the rate of innovation will be explained by the
factors that increase the intensity of organizational search). The reviewer questioned the relationship
posited in hypothesis 3: TD; = ARD,). The basis for the objection was that if there are N firms searching
for a new discovery, N — 1 of the searches will end in failure and only one search will succeed (i.e. only one
discovery will be made), regardless of the intensity of the N searches. Yet N — 1 of the searches will fail
only under the strictest definition of failure. It is true that only one organization will be first to achieve the
most salient target, but because some discoveries are serendipitous and it is often possible to develop a
number of variants and features of an innovation, the volume and rate of inventions should increase (TD;
should decrease) in the intensity of search. Thus, even at the firm level, the rate of discovery should depend
on the intensity of search.
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more nodes in a sparsely populated area of the technological network as
compared to the outputs that it will produce in a densely crowded region of
the network, although the overall rate of innovation may be higher for firms
in crowded technological positions due to their higher search intensities.!°
Even though there is probably no inherent carrying capacity for the number
of new developments in a technological area, it is probably the case that latent
discoveries vary in the extent to which they are suggested by the existing
state-of-the-art (see Dosi, 1982). In fact, Hagstrom’s (1965) survey demon-
strated that scientists are routinely scooped by their competitors, and there is
reason to expect that this dynamic occurs regularly in the development of
technology and that the frequency of its occurrence is a function of tech-
nological crowding. Thus, I anticipate:

Hypothesis 4

The productivity of a given quantity of RED spending will depend upon the
technological crowding of an organization’s position: organizations that occupy
crowded positions in the technological network will garner fewer inventions from each
additional dollar of RED spending.

4. Niche Overlap and Niche Width in a Patent Citation Network

Following the ecological insight that competition can be equated with niche
overlap (McPherson, 1983; Stuart and Podolny, 1996), I assume that
organizations compete when they engage in very similar activities and
therefore jockey for the same niche in a resource space. Hence, technological
competition occurs with the greatest intensity where many organizations are
committed to the development of the same technological areas. In this study,
I measure niche overlap in terms of the linkages between the actual
technologies developed by competing organizations. This is accomplished by

10 There may be an effect that works at cross-purposes with the one that I posit in hypothesis 4. The
knowledge-production process in high-technology industries is in one sense mutualistic: major
technological accomplishments tend to disseminate quickly. As a result, when one organization solves an
important technical problem, this advance can have the unintended consequence of facilitating the
undertakings of that enterprise’s nearest competitors. Because salient problems attract the attention of
many organizations in crowded segments of the network, key problems are solved quickly in those areas.
Hence, the innovations of competitors may stimulate new ideas and remove roadblocks that hamper the
endeavors at a focal firm. My assumption is that firms in crowded positions are forestalled by their
competitors more often then they are advantaged by competitors’ work. The results will decide the
question.
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using a patent citation network to link organizations to specific technological
activities (Podolny and Stuart, 1995).

Patent Citations

Patent documents include a list of references (citations) to all previously
granted patents that had made technological claims similar to those claimed
in the application. In other words, patent citations are links between the ideas
embodied in inventions, specifically connecting a proposed invention to the
existing, patented inventions that are nearest to it in technical content. In the
technological network framework articulated above, patents are the nodes in the
network (boxes in Figure 1) and patent citations ave the ties (directed lines in Figure
1) that reveal technological relations between the nodes.

The use of patent citation data to manifest evolutionary links between
patented inventions has become common in the social sciences. Researchers
have deployed these data to determine whether sets of organizations have
been investing in the development of similar technologies. For example,
Stuart and Podolny (1996) argued that patent co-citations (i.e. when two
patents are linked by citations to a common, third patent) can be used to
approximate the technological overlap of pairs of organizations. Economists
have developed a similar use for patent citation data: to document
technological knowledge spillovers between firms (e.g. Jaffe, 1986).

US Semiconductor Patents

To test the hypotheses, I assembled a longitudinal database on a sample of
semiconductor firms. All US semiconductor patents were collected for this
analysis, and the industry was selected in large part because semiconductor
firms routinely file for patent protection for their inventions. Suggestive
evidence of the proclivity to patent exists in the fact that, with a single
exception (the US government), the top ten holders of 1997 US patents were
electronics firms that each patented heavily in microelectronics: IBM, Canon,
NEC, Motorola, Fujitsu, Hitachi, Mitsubishi, Toshiba and Sony.

Because the United States is the world’s largest technology marketplace,
non-US-based firms regularly patent in this country (see Albert e al., 1991).
Attesting to this fact, Japanese firms made up seven of the ten largest holders
of the US patents issued in 1997. I collected all post-1975 US semiconductor
product, device and design inventions from the Micropatent Patent Abstract
CD series. For each patent, I retained the date of application (recorded to the
day), the assignee (the owner of the patent), and the list of US patents that
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were cited as prior art. Note, however, that patent protection in the chip
industry is not thought to be extremely effective,!' despite a series of
well-documented changes in the early 1980s to strengthen patent protection
in general and in the chip industry in particular.'? Thus, the heavy incidence
of patenting in the industry must be partially understood in terms of some of
the alternative benefits of patents, although patents do remain useful in their
traditional role as safeguards against the theft of intellectual property. The
alternative benefits include: (i) patents are crucial bargaining chips in
cross-licensing and strategic alliance negotiations (Grindley and Teece, 1997);
(i) a strong patent portfolio is a crucial deterrent against infringement
lawsuits; (iii) patents are frequently used in incentive systems to motivate
research staffs; and (iv) acquiring important patents entitle companies to
bragging rights.'?

The sample that I analyze includes all semiconductor companies tracked by
Dataquest, an industry consultancy, during the period from 1986 to 1992.
Dataquest compiles producer revenue figures from product shipment data.
Because sales volume is an important control variable in the analyses, the
sample was limited to the set of firms tracked by Dataquest.!* The sample
includes 150 companies, although some were founded during the analysis
period. T identified corporate affiliations for all firms in the sample using
annual reports and corporate directories. These were used to assign the
patents of subsidiaries to the corporate parent. After identifying the firms that
owned the 48 000 patents in the final database, I then created a series of
annual patent citation networks to generate measures for the models.

"W, M. Cohen, R. R. Nelson and J. Walsh (1996), ‘A First Look at the Results of the 1994
Carnegie—Mellon Survey of Industrial R&D in the United States’, unpublished manuscript.

'2 A number of institutional changes supporting stronger patent protection were introduced during the
early 1980s. The most important development was the creation of the Court of Appeals of the Federal
Circuit (CAFC), a federal court with jurisdiction over patent cases. The CAFC has affirmed the standing
of patents in the vast majority of cases appearing before it, thereby strengthening the property rights of
patent holders. In addition, the Bayh—Dole Act of 1980 eased restrictions on patenting based on federally
funded research, and the Semiconductor Chip Protection Act of 1984 established the copyrightability of
semiconductor mask works.

13 For example, in each of the past few years, IBM has been awarded more US patents than any other
corporation and has received almost 9000 patents in the past five years. In each of these years, IBM has
run a series of print advertisements announcing its technical prowess as evidenced by the fact that it was
the recipient of the greatest number of patents among all for-profit corporations. IBM has also
demonstrated the importance of patents as bargaining chips in the recent past: it has established a number
of multi-million dollar patent cross-licensing agreements with some of its competitors, including 3Com,
Dell Computer, Acer and EMC.

! Many of the organizations in the sample participated in multiple business lines (e.g. IBM, Siemens
and Hitachi). While corporate-level sales figures could be ascertained from public sources for most firms
in the sample, longitudinal semiconductor sales volume data are quite difficult to obtain. For this reason,
I had to rely upon Dataquest for the revenue data.
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Measuring Technological Crowding

The technological overlap of any pair of organizations in a patent network
such as the one displayed in Figure 1 can be thought of as the extent to which
the members of the pair build upon the same antecedent patents. Following a
large body of work in social network theory, two firms that build upon
identical patents are ‘structurally equivalent’ in the technological network by
virtue of the fact that their inventions are, from a structural vantage point,
identically embedded in the network (Lorrain and White, 1971; Burt, 1976).
As a general definition, two actors are structurally equivalent when they
possess identical ties to the same third nodes.

Because patent citations represent technological similarities between
inventions, a pair of organizations with a high frequency of patent co-citations
are technological competitors.!” Using Figure 1 as an example, the bold-faced
ties in the figure therefore suggest that organizations A and B are direct
competitors. These organizations focus on the same technological sub-fields,
implying that they have developed similar technical expertise. Because they
possess similar foci and are likely to be in pursuit of similar technologies, two
structurally equivalent organizations are direct competitors. Using O to
denote the extent to which organization j occupies the niche of firm 7 in period
¢, I define dyadic niche overlap as:

Z CiﬁlC/Pt

) .
o, =+——— where:/# (1)
it z Cz‘pt 7
b

and where p = 1, .. , z indexes all existing patents, and C;,,C;, is coded 1 if
a patent of firm 7,/ cites patent p at time #, and O otherwise. Therefore,
summing over p, Cy,Cy, is incremented when the patents of organizations 7
and j cite a common patent, and the denominator is a count of organization
7’s patent citations. In essence, each organization j contributes to organization
7’s crowding index the proportion of 7’s patent citation that is also made by ;

during 7. To move from a dyadic overlap measure to a composite crowding
score for organization 7, I simply sum across ;. Formally:

!5 It is important to stress that, by the novelty criterion (an invention must be novel to be patentable),
no two patents are identical. Still, those that cite the same antecedent patents are relatively
undifferentiated when compared to two patents that do not have redundant connections in the network.
We know this to be the case because citations are mandated only when an antecedent invention made
claims of novelty that are similar to those of a citing (subsequent) invention.
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Z Z Cipzc/ﬁ
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The citation network can also be exploited to construct a measure of
technological scope. If # denotes the number of producers in the industry, each
firm 7 has » — 1 potential, direct competitors (i.e. firms such that O;; > 0). I
argue that a firm is a generalist if it has engaged in patenting that directly
overlaps with many of the » — 1 potential competitors. To derive a measure
of technological scope, 1 first constructed for each firm 7 an » — 1 position
vector with elements Qijt for all 7 # j. Thus, the position vector for firm 7
consists of the technological overlap scores between it and each of its alters.
Based on this vector, I compute Shannon’s (1948) inequality index—an
entropy measure that is frequently used in population biology—as a measure
of scope (see also Theil, 1970). This measure reflects both the degree and
pattern of a firm’s technological overlap with its competitors. The Shannon
index for firm 7 at time 7 is:

G, =—Y B, Iog(Pl-]- ) where i # j (3)

J
and where P, = (0
elements on each firm’s position vector for year . Note that when any Qjit =

/a4;). In other words, P, are the column stochastic

0, the term inside the sum operator is also zero (the limit of x log x is 0 as x
approaches 0). Thus, a firm with no overlap across all 7, . . ., # is the specialist
archetype—it has a generalism score of zero (as do firms with only one direct
competitor). At the other extreme, G, reaches a theoretical maximum at log(»
— 1), which can be seen by maximizing (3) subject to the constraint that the
P, sum to 1. A value of log(» — 1) would indicate that all of a focal firm’s
competitors overlap its niche, and they do so in equal proportion. Note that
G, increases when (i) ceteris paribus, there is an increase in the number of firms
that contact 7’s niche, and (ii) holding constant the number of firms that
overlap 7’s niche, there is a decline in the concentration of the overlap.'®
Computing Oy, G and A; required a rule for how to update the variable
as the patent network evolves. The lagged year is too short of an interval to
summarize two organizations’ activities overlap at year #; however, it would

16 This measure appears quite consistent with the detailed descriptions of industry observers (see, for
example, ICE’s annual STATUS volumes) of the technological breadth of incumbents. In 1992, the firms
with the highest values on the Shannon index were IBM, Hitachi, Texas Instruments, Fujitsu, Motorola
and Mitsubishi. During the same year, Micro Linear, Kulite and Semikron were among the firms that had
low values on this variable. I wish to thank Michael Hannan, who brought to my attention the Shannon
index as a possible measure of technological scope.
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introduce noise into the network-based variables to compute them on the
basis of very old patents, since these will have lost their significance for current
activities. Therefore, I used a five-year moving window to compute crowding
and the Shannon index. The product lifecycle in the semiconductor industry
was generally considered to be about five years during the analysis period, and
this is the rationale for the duration of the window. Following equation (1),
technological overlap at 7 is computed from the patent co-citations between
firm 7 and all of its competitors between # — 5 and # — 1. However, to ensure
that the results are not sensitive to the time window, all models were
re-estimated with crowding and generalism defined over three- and seven-
year moving windows.

5. Methods

5.1 Modeling the Intensity of Organizational Search

The predictions regarding the intensity of organizational search are tested in
models of annual, semiconductor-specific R&D spending. I model the logarithm
of annual semiconductor R&D spending. I estimate models of the form:

log(R&D,) = a + Bl*log(Sales;) + B2*A4,, + B3*G, + B4*(4,*G,)
+ yX + € (4)

where A; is the crowding of organization 7’s niche in the technological
network at time 7, Sales, is the semiconductor revenues of firm 7, G, is the
generalism index, X is a matrix of control variables, and Y is a vector of
parameter estimates. The first two hypotheses posit: 32 > 0 (H1) and 4 <0
(H2).

The R&D intensity data are pooled cross-sections. I report OLS estimates
of the regression model in equation (4) with and without firm fixed effects.
The reported standard errors in the models without fixed effects are robust to
heteroscedasticity and relax the assumption that repeated observations on the
same firm are independent. The fixed-effects models incorporate a separate
intercept for each firm in the model and thus remove all between-firm
variance from the parameter estimates. These models assume that the
correlation structure in the disturbance term in equation (4) can be
decomposed into a firm-specific effect and a residual term that is uncorrelated
across observations and is homoscedastic.

Time series data on R&D expenditures were available only for publicly
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traded firms (because these data were obtained from SEC filings). Also,
because detailed business segment reporting is uncommon, semiconductor R&D
numbers were only reliably available for dedicated producers. Hence, data
availability restricted the analyses with R&D spending to the subsample of
publicly traded, single-business semiconductor firms. The R&D subsample
includes the 41 firms satisfying these criteria (all firms in SIC 3674 in the
Compustat database).

5.2 Modeling the Rate of Innovation

The final two predictions are tested in continuous time event history models
of the rate of patenting. In these models, the duration between events (the
waiting time) is measured as the time elapsed between patent applications. If
the firm has issued no patents through #, duration is the time since the firm
was founded. The application dates on patents are recorded to the day.

I estimate the hazard rate using the semi-parametric Cox model.'” In a Cox
model, the hazard rate is the product of an unspecified baseline rate, h(z), and
a term specifying the influences of covariates in X:

r(t) = h(H)exp{B1*Sales;, + B2%A, + B3*RD,, + B4*(A4,*RD,) + Y X}
5)
where the variables are defined as above. The final two hypotheses posit: 32 >
0 (H3) and B4 < 0 (H4).

The Cox model does not make parametric assumptions about the form of
duration dependence in the hazard rate. This is advantageous because
incorrect parametric assumptions may lead to biased estimates of the effects
of covariates on the hazard rate (Blossfeld and Rohwer 1995). In the Cox
model, the coefficient estimates in 3 represent shifts in the baseline rate due
to the covariates, under the assumption that all such changes are proportional
[i.e. h(#) does not depend on the covariates}.

17 The convention in the economics literature has been to model firm-level patent rates as annual counts.
However, there are two compelling reasons to model the data as an event history. First, the exact day on
which a patent application is filed is part of the published patent document. The hazard rate models I
report use all of the information on the timing of the event, rather than aggregating the data over a
year-long period. Second, the Poisson model and its derivatives (in the linear exponential family) assume
that the rate of occurrence of an event is constant within observational units: these models assume that the
probability of an event in one time is constant and independent of prior occurrences. Inspection of
Nelson—Aalen non-parametric plots of the cumulative hazard of patenting show that this assumption is
violated in the semiconductor patent data: there appears to be strong evidence of negative duration
dependence in these data. Still, I also estimated annual patent counts employing the conditional
fixed-effect negative binomial estimator proposed by Hausman ez 2/. (1984), and this estimator yielded
similar results.
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5.3 Control Variables

All models control for firm size. There is considerable evidence suggesting
scale economies in the innovation (and patent) production function. For
example, a certain volume of patenting is necessary to justify the expense of
in-house patent counsel. There is also a very large, empirical industrial
organization literature on the relationship between the size of the firm and its
ability to capture the value from R&D investments (see Cohen and Levin,
1989, for a review). Thus, it is necessary to account for firm size.

It is also important to control for a potential correlate of technological
crowding: the level of market demand. R&D spending levels and innovation
rates may be highly sensitive to changes in the level of demand in the market
segment(s) in which particular firms operate. A plausible dynamic is that
technological areas attract innovators when they are growing, and therefore
crowding in the technological network may be driven by positive changes in
market demand (this is the argument that market demand ‘pulls’ innovation).
In other words, the level of market demand may be an omitted variable whose
effect would be absorbed by the technological crowding coefficient. This
explanation stands as a reasonable alternative to the posited mechanisms of
crowding, so I include three control variables to allay concerns that the results
are driven by changes in the level of product demand.

First, all models also include year dummy variables to account for economic
conditions and other macro-level factors that have approximately constant
effects on the organizations in the sample but vary over time. These dummies
should absorb the effects of temporal changes that affect the level of R&D or
rate of innovation in the industry as a whole. Second, I control for the growth
rate of each firm’s semiconductor revenues during the lagged year. The
rationale for including this variable is that firms in niches in which demand
is growing will on average experience high rates of sales volume growth.
Therefore, including in the models the growth rate of the firm in the previous
year should serve as a control for heterogeneity across organizations in
changes in the demand for their products. Third, I use the patent data to
derive endogenous technology ‘clusters’, where common cluster membership
signifies participation in broadly similar areas of technology. The purpose of
this is to control for differences in demand and other conditions across the
major sectors of the industry.

To identify mutually exclusive technology groups, I used a patent
co-citation matrix as a measure of association in a blockmodel (White ez 4/.,
1976). I organized the alpha coefficients specified in equation (1) as a
firm-to-firm matrix, denoted M {= Q;1, where the O are defined as above
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(the proportion of the patent citations made by the firm on the 7th row that
are also made by the firm on the jth column). Hence, the elements in the
association matrix are the dyadic technological overlap scores for all pairs of
organizations. I then compute the overall proximity of all pairs of firms by
correlating the columns in the 2N X N matrix, (M| | M")". The (i,/)th element
in the resultant matrix C = [r;} is the correlation coefficient between the zth
row and column and the jth row and column of the technological overlap
matrix M. Finally, application of a hierarchical clustering algorithm parti-
tioned the organizations into mutually exclusive clusters. This technique is
performed for the first year of the empirical analysis and cluster memberships
were held constant in subsequent years.'®

A final control variable only appears in the patent rate models. One of the
weaknesses of patent-based innovation indices is that the propensity to patent
varies over firms. One source of variation is that some organizations simply
choose not to patent all of their inventions. Another source is that some firms
are more skilled than others at developing inventions. A third culprit is that
some organizations will participate in underexploited technological areas in
which there are abundant opportunities to innovate. To account for hetero-
geneity in firms’ propensities and abilities to patent, I constructed a variable
that reflects historical differences in patenting behavior: all models contain a
(time-changing) count of the number of patents granted to each organization
from 1975 until the start of the current spell. Including the number of times
that the focal event has previously occurred for each firm is a method of
controlling for unobserved heterogeneity in event models (Heckman and
Borjas, 1980).

6. Results

Table 1 contains descriptive statistics for the variables in the four models.
Turning to the multivariate analyses, Table 2 reports OLS estimates of the
R&D spending models. The baseline model 1 includes year dummies, the
growth rate of the focal firm’s semiconductor business during the previous

81 chose to use a correlation coefficient instead of a Euclidean distance as the metric of pairwise
equivalence among organizations (0;) to group organizations that have similar technological overlap
patterns in the network, without capturing size differences between organizations (size differences are
captured by the other control variables). Using the correlation coefficient will group organizations that
innovated in similar technological areas even if they produced significantly different volumes of innovation.
I used both Ward’s method and average linkage to cluster the data. Ward’s method minimizes the
within-cluster sum of squares over all partitions; average linkage uses the average distance from objects in
one clusters to those in other clusters as a cluster criterion. Respectively, I identified a six- and a five-cluster
solution. I estimated all models with both sets of cluster memberships. The coefficients on all substantive
variables are robust across both cluster solutions.
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year, the size of the firm, and unreported technology cluster dummy variables.
Both the size of the firm and it’s recent growth rate have positive, statistically
significant effects on R&D spending. The elasticity of R&D spending with
respect to firm sales in the baseline model is 1.07, suggesting that R&D
spending increases modestly more than proportionately with an increase in
firm size (although the coefficient on sales declines as other covariates are
entered and the corresponding coefficient in the baseline fixed effects model is
shy of unity).

Model 2 adds the technological crowding variable, which has a positive,
statistically significant, and substantively large effect. As predicted,
organizations in crowded positions devote relatively greater resources to
innovation. Based on model 2, a one standard deviation increase in the
crowding variable leads to a predicted 30% increase in the level of R&D
spending. The third model in Table 2 includes the Shannon generalism index
and also the interaction between the Shannon index and the level of
technological crowding. The main effect on the index is positive, implying
that organizations with technical activities spread broadly across the segments
in the microelectronics industry heavily invest in R&D. Because innovations
result from novel syntheses or recombinations of existing technical know-
ledge, it is not surprising that generalists spend relatively heavily on R&D in
an effort to capitalize on synergistic opportunities across the competences
within the firm. Model 3 also offers support for the second prediction: it
demonstrates a negative, statistically significant (but only at the 10% level)
interaction between crowding and technological scope. Thus, it appears that
the responsiveness of R&D spending levels to niche crowding is contingent
on the scope of the firm: high crowding evokes greater R&D spending levels
at low values of the Shannon index—in other words, among specialist
enterprises.

The four remaining models in Table 2 report a comparable set of R&D
spending models from a fixed-effects specification. Comparison of the results
against the OLS parameters with robust standard errors demonstrates that
support for the hypothesized effects remains strong even allowing for
firm-specific intercepts. The first two hypotheses are supported, although the
coefticient magnitudes are generally smaller in the fixed-effects specification.
Finally, the hypotheses continue to be supported in model 7, which includes
the lagged dependent variable. Including lagged R&D spending as a covariate
eliminates concern about reverse causality, namely that it is in fact high R&D
spending that produces high crowding and it is the temporal stability of this
relationship that produces the coefficient on crowding in the models that omit
the lagged dependent variable.
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TABLE 2. OLS models of the Intensity of Organizational Search (log R&D)

Variable ar Q¢ O @P 6P ©P° (s
Log sales 1.073%%  0.987%*%  0.954%%  (.852%* 0.837%%  (.838%* 0.623%*
(0.047) (0.043) (0.045) (0.047) (0.062) (0.062) (0.062)
Sales growth (lagged year) 0.239%% (0.258%%  (.270%* 0.035 0.025 0.032 0.128%:*
(0.118) (0.106) (0.103) (0.038) (0.035) (0.035 (0.037)
Technological crowding 0.200%*  0.240%* 0.042%%  0.097%* 0.075%*
(0.040) (0.071) (0.021) (0.036) (0.033)
Shannon index (corporate 0.186%* 0.115%%* 0.079
tech. scope) (0.081) (0.052) (0.049)
Crowding X Shannon index —0.054%* —0.047%%  —0.035%%*
(0.031) (0.019) (0.017)
Log R&D, lagged 0.281%%*
(0.053)
Year is 1986 0.018 0.039 0.014 0.006 0.048 0.066 0.081
(0.224) (0.220) (0.225) (0.062) (0.067) (0.088) (0.081)
Year is 1987 —0.035 —0.043 -0.072 —0.011 0.069 0.084 0.053
(0.218) (0.215) (0.224) (0.062) (0.073) (0.093) (0.086)
Year is 1989 0.003 —0.035 —-0.068 —0.031 0.078 0.096 0.033
(0.198) (0.188) (0.201) (0.058) (0.076) (0.097) (0.090)
Year is 1990 -0.018 —-0.097 -0.143 0.005 0.137 0.151 0.094
(0.181) (0.164) (0.178) (0.059) (0.082) (0.104) (0.096)
Year is 1991 -0.010 —0.060 -0.106 0.007 0.161 0.174 0.084
(0.176) (0.164) (0.183) (0.059) (0.086) (0.108) (0.101)
Constant —2.681%% —2.705%% _2.683%% _1.369%*%  —0.706%* -0.807%* = —0.896%*

(0.392)  (0.387) (0.406) (0.236) (0.264) (0.273) 0.251)

Observations 221 221 221 221 221 221 221
2 0.756 0.783 0.788 0.685 0.698 0.710 0.759

40LS models with robust standard errors
bFixed effects OLS models (reported 72 is within-firm)

The patent rate results are presented in Table 3. The baseline model 8
contains the controls from the R&D intensity models and a time-updated
count of the number of patents granted to each organization since 1975. The
controls show that firm size increases the rate of patenting (the positive size
effect remains in the model that includes R&D spending, demonstrating that
there is a net effect of firm size even after controlling for investment in R&D).
Organizations that grew quickly also patent at a higher rate, although the
sales growth variable is statistically significant only at the 10% level. The
occurrence dependence variable appears to have the desired effect of capturing
the influence of unobservables which accelerate the rate of innovation. Note
also that the controls in the baseline patent rate and R&D intensity models
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TABLE 3. Cox Models of the Patent Rates of Semiconductor Firms

Independent variables Model (8)* Model (9)* Model (10)*P
Semiconductor sales ($b.) 0.146%* 0.131%* 0.439%*
(0.010) (0.010) (0.149)
Revenue growth rate at # 0.038* 0.031 -0.012
[sales #/(sales # — 1)} (0.020) (0.020) (0.083)
Total number of patents since 1975 0.023%%* 0.028%%* 0.002
(in 100s) (0.002) (0.002) (0.013)
R&D spending year 7 0.006%%*
(0.0017)
Tech. crowding of organization’s 0.182%%* 0.192%%
position (A7) (0.019) (0.043)
Tech. crowding X R&D spending —0.002%*
(0.0006)
Year is 1986 -0.017 —0.035 -0.058
(0.034) (0.035) (0.107)
Year is 1987 0.111%* 0.126%%* 0.104
(0.033) (0.033) (0.101)
Year is 1988 omitted omitted omitted
Year is 1989 0.007 —0.010 —0.089
(0.031) (0.031) (0.095)
Year is 1990 —0.074%* —0.098%* —0.020
(0.032) (0.032) (0.097)
Year is 1991 -0.038 —0.0763%* 0.1382
(0.030) (0.0310) (0.1022)
Number of organizations 150 150 41
Number of events 13642 13642 2685
Number of spells 14448 14448 2888
Log-likelihood —-121551 121505 —12982

*Model includes unreported technology cluster dummies.
bModel includes only dedicated, US-based semiconductor firms (those in the R&D subsample).
*Significant at 10% level; **Significant at 5% level.

have similar effects. This is consistent with the view that the determinants of
R&D spending should also be predictors of the rate of innovation.

Model 9 adds the technological crowding variable to test the third
prediction that organizations in crowded positions innovate at a high rate.
Once again, the coefficient on the crowding variable is in the hypothesized
direction and is substantively and statistically significant. The technological
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crowding coefficient implies that a unit increase in the variable multiplies the
patent rate by a factor of 1.31. Hypothesis 2 is therefore supported.'”

The final model 10 tests the prediction that an increase in R&D spending
has a smaller effect on the patent rate among firms in the most crowded
positions. Model 10 includes R&D spending and a crowding-by-R&D
interaction variable. The results indicate that the patent rate increases in
R&D spending; they also show a positive, direct effect of crowding on the
innovation rate even after controlling for R&D spending. As I elaborate in
section 7, one potential explanation for the direct effect of crowding, even
after controlling for R&D spending (and therefore the implicit, endogenous
effect of crowding through R&D), is that firms in crowded positions shift their
foci toward more incremental and short-term R&D projects (as opposed to
projects that may not reach fruition for a number of years). This would have
an immediate, positive effect on the rate of innovation, but possibly
compromises the quality and quantity of innovation in the long term.

In support of the final prediction, the interaction between crowding and
R&D spending is negative in model 10, showing that the impact of R&D on
the patent rate is contingent upon the level of crowding. For example, if a
firm with ‘0’ crowding (a firm in a completely vacant position in the
technological network) increases R&D spending by $25 m., it can expect a
16% increase in its baseline patent rate [= exp(0.006 X 25)}. This can be
compared to the more meager 7% increase in the patent rate that follows a
same-sized increase in R&D spending made by a firm at the mean level of
crowding {= exp{0.006 X 25 —(0.002 X 25 X 1.77)}1. Hence, the effect
of R&D spending on the patent rate depends significantly upon where a firm
is situated in the technological network.

The negative coefficient on the crowding-by-R&D spending interaction is
also helpful in ruling out an alternative explanation for some of the
crowding-related effects. In particular, it is possible to argue that crowding
proxies for the opportunities to innovate in the areas of a firm’s activities.
According to the line of reasoning, crowded areas are fertile because they are
rich in technological spillovers: the fact that many other organizations are

Y One of the shortcomings of patents as a measure of innovation is that the distribution of the
‘importance’ of patents is known to be highly skewed. However, there is one modeling strategy that may
be employed to account for this heterogeneity. There is evidence that highly cited patents represent the
most important inventions, suggesting that weighting patents by the number of citations they receive in
subsequently issued patents will correct for differences in the importance of patents. Therefore, I
performed the patent rate analysis defining the dependent variable to be an annual count of the number
of patents received by an organization, weighted by the number of patent citations accruing to those
patents in the four following years. Because it is necessary to allow for a minimum of four years for patents
to accrue citations, this analysis was limited to the first two years of the data. The results for the
citation-weighted patent count models were still consistent with the results reported in Table 3:
technological crowding had a positive effect on the citation-weighted patent rate.
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working in the area means that that there are ample opportunities to
capitalize on competitors’ advances (either because innovators are incapable
of fully excluding others from utilizing their discoveries or because firms’
advances open up new technical avenues for the organizations around them).
However, it is hard to square this interpretation with the finding of a negative
interaction between crowding and R&D spending.

7. Discussion: Implications and Future Directions

The findings reveal strong effects of technological crowding on the rate of
innovation and the level of R&D spending. It is important to emphasize,
however, that the results pertain only to innovation-related outcomes and do
not necessarily inform the association between technological positioning and
the life chances or performance of high-technology firms. There are many
potential drawbacks of occupying a crowded technological position. First,
organizations that concentrate on similar technological domains encounter
one another further downstream where they compete in the same product
markets. Second, organizations with overlapping technological niches are also
likely to compete in the same factor markets (Hannan and Freeman, 1989).
For example, they will enter the labor market demanding similarly-skilled
technical personnel. Thus, Podolny er /. (1996) found that semiconductor
firms in crowded positions had lower rates of growth than otherwise
comparable producers. In addition, the results in this study show that R&D
spending has a lower effect on the rate of innovation among firms in crowded
areas of the technological network. On balance, organizations in sparse areas
of technology innovate less quickly, but they also spend less on R&D and, if
compared on other measures of performance, they may well surpass those of
organizations in crowded niches.

At this juncture, it might be useful to link the focus of this study to the
broader literature on high-technology industry dynamics, most importantly the
evolutionary literature and the large body of work on technology cycles. Much
of the work in this area elaborates the dominant design concept introduced by
Abernathy (1978) and Abernathy and Utterback (1978). In this view,
technology develops according to an evolutionary process driven by variation
and selection. The early period of development (known as the era of ‘ferment’)
is characterized by many competing technologies and lasts until a selection
process produces a dominant design. The establishment of a dominant design
marks the transition into a period in which technology evolves in a more orderly
and incremental fashion along a well-defined trajectory (e.g. Dosi, 1982;
Anderson and Tushman, 1990; Tushman and Murmann, 1998). This

770




A Structural Perspective on Organizational Innovation

methodical development continues until it is disturbed by a subsequent
technological discontinuity, followed once again by a selection process heralding
the transition to a new dominant design. The basic claims of the evolutionary
model (and a set of associated industry dynamics) have been strongly supported
in many historical and case studies (Tushman and Murmann, 1998).

Although operating at a different level of analysis, the crowding concept
mixes comfortably with the literature on dominant designs. The notion of a
dominant design applies at the product or process level, or at the level of the
component subsystem and associated linking mechanisms (Henderson and
Clark, 1990). Thus, a dominant design is a technical property rather than an
organizational characteristic, although organizational dynamics have been
shown to vary significantly across the pre- and post-dominant design periods.
Linking the two concepts, it is highly probably that crowding will be greater in
the post-dominant design period, since this is the era in which widely accepted
technical approaches serve as common foundations for all of the innovators in
the market (in fact, crowding is precisely defined by the level of redundancy in
technical foundations between a focal organization and all of its alters). Thus,
the level of crowding will vary across the technology cycle, and a promising
empirical direction would be to explore how the effects of crowding or other
properties of the firm—environment interface vary across the stages of the
technology cycle and impact transition rates between stages. Similarly, it would
be useful to take a more macro view and to explore how network-level
properties of the citation network (density, entropy, hierarchy, etc.) vary over
the technology cycle and affect the transition into successive states.

I have focused on the effects of crowding levels across firms and over time.
However, crowding may be an important property at a higher level of
aggregation. While the actual correspondence between firm- and area-level
crowding will depend upon the distribution of the activity of firms across
different segments, the crowding of a sector can be analogously conceived as
being inversely proportional to the amount of differentiation within it. Thus,
although T have concentrated on the interorganizational competition that
emerges when firms build upon a similar vector of foundational nodes in the
patent network, it is a straightforward extension to investigate how the
differences in the aggregate crowding in broad technological areas shape the
rate and content of innovation at the area level.?’

20 If one chose to investigate the rate of innovation above the organizational level of analysis, one would
then confront the task of identifying the boundaries around technological arenas. There are two approaches
to the identification of boundaries. First, the endogenous approach uses one of a variety of network
partitioning techniques to identify naturally occurring divisions in the data. Second, the exogenous

approach utilizes a pre-existing taxonomy, such as the patent classification system, to distinguish among
broad areas of technology.
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It is instructive to imagine two market structures. In the first, innovation
is spread evenly over the market terrain; from a network standpoint, there are
relatively few indirect ties among the innovations comprising the market’s
technology base. In contrast, the second area is crowded: inventions form a
clump in the center of the market and the nodes in the network appear to
comprise a clique. The findings in this paper suggest that the rate of inno-
vation is likely to be more rapid in the second market, because the actors in
the sector will on balance hold more crowded positions.?' In fact, this
prediction is consistent with and analogous to certain theories of competition
in economics, particularly work on the spatial concentration of industries. For
instance, Porter (1990) argues that geographic concentration stimulates
growth because the inter-firm rivalry stimulated by spatial proximity leads
firms to invest in innovation and quickly adopt competitors’ advances (see also
Henderson, 1986; Glaeser et /., 1992).

This discussion suggests a broader study than the one I have performed:
with the availability of the complete US patent system in electronic form, it
is now feasible to conduct an analysis of the rate of knowledge production in
all areas of technology (at least, all areas in which innovators routinely file for
patent protection). Such a study has the potential to yield a general
understanding of how the structural properties of semi-bounded areas of
technological knowledge affects the rate of knowledge production. My belief
is that characteristics of full fields of technology, such as the level of internal
differentiation among the actors involved in developing them, will be strong
predictors of the speed of technical change.

A second avenue for future research would be to explore how contextual
variables such as crowding affect the characteristics of the technologies that
firms develop. For example, it may be that organizations in crowded regions
of the technological network forego searches for basic technological inventions
in favor of more tractable and incremental discoveries, which can be brought
to market in (relatively) brief periods of time. This choice of focus could stem
from the rampant priority concerns felt by organizations in crowded
niches—concerns that are surely amplified by the perceived need to create a
unique identity in a product market by establishing a strong upstream
position tied to one or more areas of technology. The paper’s findings in fact
hint at such a dynamic: crowding has a direct effect on the rate of patenting

I However, I would again expect that the patent rate per marginal R&D dollar will be lower in more
crowded areas. As more triads in the area close (i.e. as more new patents include citations both to a given
patent and the inventions cited as prior art of the focal patent), innovation may become more difficult. The
reason is that many indirect ties in the citation network appear when clusters of innovation are tightly
compacted from a technical standpoint. In other words, there is less room for new activity in such areas
because there is very little technical distance between existing inventions.
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even after controlling for the level of R&D spending, in addition to its indirect
effect through its impact on R&D spending. My interpretation of this result
is that firms in crowded positions adjust their focus toward nearer-term R&D
projects, and hence crowding augments the rate of innovation net of its effect
on the quantity of funds devoted to R&D. If correct, the implication is that
incremental innovation occurs quickly in crowded fields, but it may do so at
the expense of more fundamental innovation. With a longer observation
period, it would be possible to investigate how the more distant history of
environmental conditions experienced by an organization affects the firm’s
current-period productivity.
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